In this assignment, you will solve some simple problems that teach you to design and analyze parallel algorithms using the techniques you have learnt in class.

Problem 1-1. The Stock Market Problem [25 points]

The problem with the stock market is that, while it is possible to make a great deal of money buying and selling stocks, it’s easy to lose even more. The long-standing—if somewhat unhelpful—maxim to make more money than you lose is “buy low, sell high.”

The stock market problem is finding the best opportunity to follow this advice: for any sequence of integer prices, where the index in the sequence represents time, find maximum jump from an earlier price to a later price. For example, if the sequence of prices was
\[
\langle 40, 20, 0, 0, 0, 1, 3, 3, 0, 0, 9, 21 \rangle
\]
then the maximum jump is 21, which happens between the price at time 2 and time 11. More formally, the stock market problem is to compute
\[
\max \{ s_j - s_i | 0 \leq i \leq j < |s| \}
\]

(a) **Naive Solution** [5 points]

Describe a simple quadratic work solution to the stock market problem and analyze its work and span.

(b) **Divide and Conquer** [20 points]

Solve the stock market problem by divide-and-conquer recursive programming and analyze its work and span.

Problem 1-2. Work/Span Analysis of parallel_for [25 points]

As an exercise, you were supposed to analyze the work and span the following code that uses a parallel for loop. In class, we saw that we can convert a parallel for loop into code that just uses spawns and syncs using a divide and conquer algorithm. This creates an additive span of \(O(\lg n)\). You will now analyze two other variants for parallelizing this loop.

(a) [10 points] An Intel engineer comes to you tells you that they have decided to make a parallel for loop more efficient by doing a divide by 3 divide-and-conquer instead of divide-by-two as you learned in class. Give the pseudocode for this new version of parallel for loop and analyze it. Does this modification improve the work and span asymptotically?
(b) [15 points] We are now going to coarsen the base case. Analyze the work and span of the following computation in terms of G and n.

\[\text{COPYARRAY}(A, B, \text{start}, \text{end}) \]
1. if \(\text{end} - \text{start} < G \)
2. then for \(j \leftarrow \text{start} \) to \(\text{end} \)
3. do \(B[j] \leftarrow A[j] \)
4. return

5. \(\text{mid} \leftarrow \lceil (\text{start} + \text{end})/2 \rceil \)
6. \(\text{spawn COPYARRAY}(A, B, \text{start}, \text{mid}) \)
7. \(\text{COPYARRAY}(A, B, \text{mid} + 1, \text{end}) \)
8. return

Problem 1-3. Strassen’s Algorithm [20 points]

We learned strassen’s algorithm for matrix multiplication in class. Now you will write the pseudocode and analyze the algorithm’s work and span. You want to compute \(C = A \times B \), where \(A \), \(B \) and \(C \) are all \(n \times n \) matrices. We first divide them into 4 parts, \(A_{11}, A_{12}, A_{21}, A_{22} \) etc. Then we can calculate the matrix \(C \) using the following mathematical formulation:

\[
\begin{align*}
M_1 &= (A_{11} + A_{22}) \times (B_{11} + B_{22}) \\
M_2 &= (A_{21} + A_{22}) \times B_{11} \\
M_3 &= A_{11} \times (B_{12} - B_{22}) \\
M_4 &= A_{22} \times (B_{21} - B_{11}) \\
M_5 &= (A_{11} + A_{12}) \times B_{22} \\
M_6 &= (A_{21} - A_{11}) \times (B_{11} + B_{12}) \\
M_7 &= (A_{12} - A_{22}) \times (B_{21} + B_{22})
\end{align*}
\]

Given these matrices, you can now compute the 4 parts of the final matrix.

\[
\begin{align*}
C_{11} &= M_1 + M_4 - M_5 + M_7 \\
C_{12} &= M_3 + M_5 \\
C_{21} &= M_2 + M_4 \\
C_{22} &= M_1 - M_2 + M_3 + M_6
\end{align*}
\]

Given this formulation, provide the pseudocode for strassens. There is more than 1 correct answer, and all answers with the correct work and reasonable span will get credit.
Problem 1-4. Sum your ancestors [30 points]

You are given a complete binary tree of height h with $n = 2^h$ leaves, where each node (internal nodes and leaves) of the tree has an associated value v (which is an arbitrary real number).

If x is a leaf, we denote by $A(x)$, the set of ancestors of x (including x as one of its own ancestors). That is, $A(x)$ contains x, x’s parent, x’s grandparent, etc. up to the root of the tree. Similarly, if x and y are distinct leaves, we denote $A(x, y)$ as the ancestors of either x or y. That is $A(x, y) = A(x) \cup A(y)$. We define a function $f(x, y)$ as the sum of all values of the nodes in $A(x, y)$. An example is shown in Figure 1.

Give a parallel algorithm that efficiently finds two leaves x_0 and y_0 such that $f(x_0, y_0)$ is as large as possible (largest among all the pairs of leaves). Analyze the work and span of your algorithm.

Figure 1: $A(x, y)$ is shown in bold. $f(x, y) = 19 + 15 + 36 + 10 + 27 + 30 = 137$. For this tree, the value of $f(x, y)$ is maximized for the leaves x and y.